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ABSTRACT

)

The general problem of the propagation of a plane harmonic
electromagnetic wave through an ionized gas is considered,
including collisions, some form of electrondensitydistribu-
tion, and a magnetostatically induced anisotropy. The pres-
ent state of the art is examined first, including an outline of
the WKB approximation and a summary of electron density
distributions for which complete wave theory solutions exist.
Then, specific analytical solutions and appropriate numerical
calculations are derived to evaluate the effect of the applied
magnetic field onpropagation. A detailed parametricinvesti-
gation, several exemplary flight conditions, and a possible
experimental shock-tube program are analyzed assuming a
homogeneous plasma. Preliminary estimates of the effects
of plasma inhomogeneities and nonuniformities in the mag-

netic field on propagation are obtained.

/
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SECTION I

INTRODUCTION

The problem of electromagnetic wave propagation in an anisotropic
medium has been considered in several diverse fields of study. Initial
interest centered about investigations in crystal optics (see Born and Wolfl).
More recently, the introduction of anisotropic ferrite media in microwave
device applications resulted in further treatment of the subject. Plasma
physicists have employed microwave beams to produce diffuse plasmas and
for diagnostic purposes. They have contributed extensively to the micro-
scopic theory of propagation in 1‘11agnetoactive=:< plasmas in such related fields
as plasma dis:gnostics, astrophysics, and controlled nuclear reactions.
Considerable work has been done in the field of ionic radio-wave propagation,
the so-called magneto-ionic theory. The primary interest there is the study
of reflection of electromagnetic waves from the inhomogeneous ionosphere in
the presence of a constant magnetic field. Of interest also is the use of
radio waves as a probing tool to examine the physics of the ionosphere itself.
With the advent of space exploration, the problem of communication with
vehicles through the plasma sheath or wake has arisen, and the application of

magnetic fields has been suggested as a possible solution.

The present study is formulated in terms of ionized gas parameters,
using a macroscopic approach in which the medium is characterized by
simple constitutive relations. Although the emphasis, therefore, is in the
field of plasma physics, many of the general considerations and methods of
solution may be appropriate to the research work involving solids mentioned
above or, for example, to the study of acoustical wave propagation in

inhomogeneous fluids.

# Sy 7
The use of this term is convenient to indicate the presence of an applied
magnetic field.



The basic equations governing the propagation of electromagnetic
waves in inhomogeneous, nonuniform, magnetoactive plasmas are derived
in the next section. In Section III, a homogeneous plasma is considered and
the essential elements of ray theory are reviewed including the limiting
condition as prescribed by the WKB approximation. The general inhomoge-
neous plasma problem is examined in Section IV, and a summary of electron
density distributions for which there are full wave solutions is presented.
Appropriate analytical solutions and numerical calculations are obtained in
Sections V, VI, and VII, which provide the basis for the present preliminary
evaluation of the effect of an applied magnetic field on propagation. Detailed
quantitative (parametric) results are obtained in Section V, assuming a
homogeneous plasma slab and normal incidence, normal applied uniform
magnetic field. Specific exemplary flight conditions are examined also on
this basis as is the initial consideration of a proposed experimental
shock-tube program. The more realistic inhomogeneous, nonuniform plasma

problem is analyzed in Sections VI and VII.
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SECTION II

BASIC EQUATIONS

Maxwell's point formulation of the electromagnetic field equations is

: . g . 2
assumed to be valid for an inhomogeneous magnetoactive medium (Stratton ):

-_ agl i aB' -
X E' = - — s X H' = —/ + J' . 1,2
v o v n {1, 2)
v-D'=p v-B'=0 , (3, 4)

where E' and H' are the electric and magnetic field intensities, respectively,
D' is the electric displacement, B' is the magnetic induction, and ¢ and J'
are the charge and current densities, respectively (rationalized mks units

are used). The continuity of charge condition relates p and J":

Q
Rel

v-J 4
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-+
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Two of these equations are not independent, however, as can be shown in

the following way:

—>

v (vxF)=0=-2(v-B) ,
Bt

-

- ] - 9 =2
vV (VXH)=0=—(y D)+ V-J =—(v:D'- p)
ot at

Hence, we may regard (1), (2), and (5) as the basic independent equations
and consider (3) and (4) as initial conditions that are valid at all times, if

valid initially. The resultant system of seven independent scalar equations



in 16 scalar unknowns is made determinate by introducing the macroscopic

properties of the medium which empirically relate E', B’, and J' to H' and E':

-

B' = pH' , D' = & , Tt = gE' . (6,7,8)

The inductive capacities p and € and the electrical conductivity ¢ are, in the
most general cases, time- and space-dependent tensors that characterize the

electromagnetic properties of the medium.

For a slightly ionized gas, the inductive capacities are, for all practical
purposes, the same as the free space values Ko and € 0° If we neglect the
motion of the more massive ions under the influence of microwave irradiation,

then J' is given by [rewriting (6) ard (7) for completeness]:

J' = Nev' , B' = poﬁ' , D' = eOE' . (9,10,11)
where v' is the electron drift velocitv, N is the number density of electrons,

and e is the charge. We will assume harmonic time dependence of the form

exp(iwt) for all time-varying vectors. Thus, for any such quantity v

V'(x,y,z,t) = {”(x,y,z)ewt s (12)

where w is the angular wave frequency. It will be convenient to introduce a

modified miagnetic field intensity:

— -
11!=(—0) H (13)

/2 _

where (po/i 0)1 Coko is the free space impedance and o is the velocity of

light in vacuo.



The electrical conductivity and, therefore, the relationship between
J and E for the plasma, is determined from the equation of motion for an
average electron in some region of space in which is established, in general,

a steady, spatially dependent biasing magnetic field of induction BO:

—
L}

md—v-+mw\_;'=e(f'+;"'x§) ,
dt c 0

(14)
where m is the electron mass, w_ is the average electron collision frequency,
and the force exerted by the magnetic field of the wave is neglected relative

to the force E'e. Assuming harmonic time dependence, we see, using (9),
g P g

that:
J = e [-U E +YYE - ip)ig + iYU(E X iB)] , (15)
Uu(u- - Y™)
where iB is the unit vector (B0 = BOiB) whose direction cosines relative to

the Cartesian coordinate system are £, m, and n, the angular plasma

frequency wp, and the angular cyclotron frequency at which the electrons

gyrate due to the externally applied magnetic field wp are given by:

2 eg
ey , Bt =D , (16a)
P eom B m
2 -
/W - wB wc
x:k_p) R Y= R 7 = — , U=1-1iZ , (16b)
w W w

and the vector Y acts in the opposite direction to BO (since e < 0) where
Y = |Y]| = ('e"BO/mw). Expressing (15) in matrix notation T = GE exhibits

the general character of the electrical conductivity for a magnetoactive



medium, Substituting Eqs. (10, 11, 13, 15, 16) into Maxwell's Eqs. (1)

through (4), we obtain the following basic system:

-_ — - A
vXE-= -inOH 5 VX H= inoKE 5 (17,18)
V'E=€£' ’ V';;:o ’ (19’20)
0

where the matrix K has components Kij(i,j = x,y,2),

1 - AU -1%v% A(-inYU +2mY?) A(imYU + £nY?)
& . 2 2 2.2 ; 2
K=| A(inYU +{mY%) 1 - A(U® - m°Y¥9) A(-if YU + mnY®) , (21)
A(-imYU +2nY%)  A@{LYU + mnY?) 1 - A(U? - n%Y?
Y 2 . q
A= X/U(U” - YT, ng = oo/c0 = Zn/)\o is the free-space wave propagation

constant, )«.0 the free-space wavelength, and H is given by Eq. (13). The
complete system of differential equations for the wave motion is expressed
by the two vector equations (17) and (18) in E and 7; where ?( is given by (21).
It is noteworthy that the electromagnetic properties of the medium are
completely characterized by (21). The orientation of gO is arbitrary, and,
since X, U, and Y may be space dependent, Eq. (21) will apply for the
general case of an inhomogeneous, nonuniform, magnetoactive plasma.

Additional discussion is given, in detail, by Ginzburg3 and by Budden. 4



SECTION 1II

PROPAGATION IN HOMOGENEOUS, UNIFORM,
MAGNETOACTIVE PLASMAS

Eliminating Hfrom (17) and (18), we obtain the following wave-like

equation for g:

—p — —p A—‘b
UXVUXE=9v-B) - v°F = n®RE (22)

A
where the matrix K is given in (21). Consider now the solutions to this equa-

tion which represent possible plane waves in an infinite homogeneous, uniform,
A
magnetoactive plasma. Since K is constant, we may assume characteristic

solutions of the form:

-in ;_;
B aalt e O , (23)

where n is the so-called wave normal (i.e., normal to the plane wave front)

)

which identifies the direction of propagation, g(l is the constant amplitude,
and T is the radius vector. In the generzl case, for a real frequency w, the
wave normal is a complex vector of the form n :; - ia. where ; and a are
real. We will restrict our attention to the case of homogeneous plane waves,
however, so that the planes of equal phase and amplitude coincide and the
wave normal may be written in the simplified form:

&

, ' (24)

7= (a - ip)

where t is a unit vector (real) in the propagation direction.

i =



Substituting (23) and (24) into (22), we obtain:
— — A
@ - i) 2T x (¢ x By = kgD (25)

which represents a system of three homogeneous algebraic equations for the
three components of E(l). The existence of a nontrivial solution of this sys-
tem requires that the determinant of the coefficients vanish, from which one
may obtain the required expression for the quantity (a - il3)2. It would appear
on first examination of (25) that the resultant equation should be a cubic in

(a - i[3)2. If, however, we take the dot product of (25) with ?, the left-hand

A >
side will vanish (thus, the projection of the vector KE(I)
A

in the propagation
direction is zero). Since K is not a function of (a - ip), it follows that there
exists a linear relation between the three components of E(l) in the wave
which must be independent of {(a - i[3)2. Without going through the details of
writing out the full expression, we see, therefore, that the aforementioned
condition for the existence of a nontrivial solution of the system (25), or,
equivalently, the existence of solutions to (22) of the form (23), leads to a

quadratic relation for the quantity (a - i[3)2.

It is clear from the preceding remarks that the simplest way of deriving

the desired expression for n¥%,
n* = a - ip s (26)

is to choose a coordinate system so that the positive z-axis is in the direction
of t. The z-component equation of (25) will not involve n#*, and a quadratic
relation for n*z will follow with a minimum of algebraic manipulation. There
is no loss of generality using this effort-saving simplification, because the
properties of the medium should not depend on the choice of coordinate system.
Further, for an arbitrary orientation of the magnetic field, the y-axis can be

—

selected perpendicular to BO Therefore, we will assume that gO is in the



x-z plane at an angle y to the positive z-axis. The quadratic equation
defining n*2 will now be derived from (25) on the basis of the preceding

remarks.

The three scalar equations (25) for the components of E(l) reduce to:

(’n=:=7- o )E“) sk Wik Moo (27a)
XX X XY y X2z 2
& gl (-n*-’- + K )E“’ +x eV oo (27b)
yxX X YyJj vy Yz z
k eV+ix six gWoo . (27¢)
ZX X zyy 22 2

The vanishing of the determinant of the coefficients of E(l) leads to the fol-

. . pr— o4
lowing quadratic equation in n%":

[l - A(UZ = YZ) o AYZ Sin2 Y] n*4
+ {-2(1 - AU9[L - AU® - YH) + AY? sin? y}n*z
+ [0 - AUSY? - A%USYAL - AU% - YY) =0 . (28)

Rearranging terms, substituting A = X/U (U2 - YZ), and multiplying by
8] (U2 - YZ), we obtain:

(U - X)[U(n*z - 1)+ x]2 + [-YZ(U - X) - oY = sin y](n"r’z - 1)2
- XY2 sin2 y(n*z -1)y=0

If we now make the substitution:

Y3 U - X) = -Y2(U - X} sin y - Y2U - X) cos® y



in the second term and divide by (U - X)(.n*2 - 1)2, we obtain a quadratic

equation for the quantity U + X/(n’l=2 - 1), from which it follows that:

2 X
n* =] - (29)
% L 4 2172 ’

U -—LYT/Z(U k X)];{lYT/4(U - X)] +YL}
where YT is the transverse component of the vector ?, and YL is the
longitudinal component; i. e.,

YL =Y cos y ] YT =Y siny . (30)
Equation (29) is the classical Appleton-Hartree formula for the refractive
index of a homogeneous, uniform, magnetoactive medium, n* = a - if. Each

value of niz represents a pair of waves traveling both in the positive and the
. . . . ; 2\1/2
negative z-directions. It is customary to take ny =+ (nIZ) /

as determined by the positive and negative signs in (29), in which case the

for both waves,
general solution of (22) becomes:

-in_ n%z in_ nz
A O e) , (31)

where the first term represents a wave traveling in the positive z-direction
and the second term represents a wave traveling in the negative z-direction
(the real numbers a and  are taken to be positive). The physical meaning
of the two possible waves in the medium corresponding to ni is described
best in terms of the polarization of the waves, i.e., the relationship between
the components Ex and E_ with time. In general, both waves are elliptically
polarized. It will be shown subsequently that, when YT = 0, the plus sign

(usuzlly referred to as the '""ordinary' wave) represents a circularly polarized

wave whose electric field vector is rotating clockwise with time, looking along

-10-



the field, i.e., in the positive z-direction, while the minus sign ("extra-

ordinary' wave) denotes a counter clockwise rotation.

The electromagnetic properties of the medium are completely charac-
terized by the complex index of refraction. Specific calculations have been
made for a wide range of values of the three frequency ratios (assuming
YT = 0) in the present study. Rather than presenting these extensive numer-
ical results, we will discuss the general propagation properties of the plasma
quantitatively in Section V by means of the more meaningful consideration of
a particular boundary value problem associated with a homogeneous plasma
slab. A very thorough discussion of the general properties of the Appleton-
Hartree equation (29) 1s given by Ratcliffe, > Booker, 0 Budden,4 and
Ginzburg. g The reader's attention is also directed to the work of

Shkarofsky7 in which a variable electron collision frequency is considered.

Equation (29) was derived above for our discussion of plane wave
propagation in an infinite, homogeneous, magnetoactive medium where the
direction of propagation is arbitrary. It was convenient to choose the posi-
tive z-axis in the direction of propagation for this purpose. Subsequently,
however, we will be concerned with the propagation of plane waves from one
medium to another across an abrupt plane boundary. It is clearly no longer
convenient to use this approach, therefore, since the direction of propagation
and, hence, the coordinate system would be different in each medium. Apply-
ing a simple rotation of the axes, we arrive at the fixed coordinate system
shown in Fig. 1. A plane wave is obliquely incident on the free space-plasma
interface z = 0 with its wave normal in the x-z plane at an angle 8, to the

I

s
positive z-axis, i, is at an angle & from the positive z-axis, and the wave

B
normal in the medium (z > 0} is at an angle 6. Equation (29) for n*z remains
unchanged; however, the components of Y given in (30) are expressed now in

terms of the angle y =6 - 6.

-11-



Snell's law, which results from the requirement that the tangential

components of E be continuous at z = 0, states that:

sin BI = n* sin 6 , (32)

where n* and 8 may refer to either transmitted wave. The solutions in the

plasma region given by (23) are now of the form:

g =g exp[-ino(o. - iB)(x sin 8 + z cos 8)] = g1 exP[-ino(x sin BI + qz)] ,
(33)
q = n* cos 6 . (34)
The initial problem of determining n* and 6 by solving (29) and (32) simul-
taneously is greatly simplified using the relation (34) introduced by Booker. 8

Substituting (33) into (22) and proceeding as before, we obtain Booker's

quartic for q:

4 3 2
F(q)—clq + c,q7 + caq +94q+c5-0 .

¢y = U(U2 - YZ) + X(nZY2 - UZ) , c, = 2 1n SXY2 ,

¢y = -2U(U - XHC?U - X) + 2Y4(C%U - X) + xY4(1 - c%n? 4 5219 }-(35)

c, = -2¢® nsxy? |

S0 - x)clu - x)% - c?v%(c?u - x) - 12s2cixy? | !

-12-



where S =sin 8, C = cos 8., and use is made of the fact that the component

of ¥ in the direIction of the Iwave normal is YL =Y (1S + qn)(q2 + SZ)-UZ.
The quartic has, in general, four distinct roots corresponding to a pair of
waves traveling in the pusitive z-direction and 1 pair traveling in the direc-
tion of negative z, the former being of present interest. The two values of
q for these waves then can be used to determir.e the corresponding values of
n* and 6 from the following relations, obtained from Eqs. (32) and (34):

n*z = qz + SZ 1 " tan 9 =(—Sl' . (36)

There are three casers for which (35) reduces to a quadratic equation in qz.
If BI = 0 {normal incidence), the coefficients <, and 4 vanish and the solu-
tions for q = n* are those given by the Appleton-Hartree equation {29). The
remaining two cases are for EO assumed to lie in the y-z and x-y planes,

respectively, (see Budden4) and are not of current interest.

Whenever n* is varying locally, a reflection process is taking place so
that the forward- and backward-traveling waves are in general coupled. This
process is very weak in a ''slowly changing' medium, where the electron
density does not vary significantly with position, in which case the coupling
may be neglected, except in the neighborhood of certain reflection points at
which coupling is particularly strong. Such reflection points are found by
setting dq/dz =0 (Mitrag). This brief description is the basis for the so-
called WKB approximate solutions for the electromagnetic fields at nearly
all points in a "'slowly changing' medium. Both the mathematical and physical
consequences of this procedure will be clarified considerably in the next sec-
tion when a specific problem is formulated and discussed. It is apparent,
however, that propagation in homogeneous plasmas is governed by the well-
known laws of geometrical optics, i.e., ray theory. As we have indicated,

in general terms, approximate solutions can be obtained at nearly all points

-13-



in a slowly varying medium by assuming that the laws of geometrical optics
apply at each point. In this sense the WKB solution is often referred to as

a mathematical expression of ray theory. Several additional references of

interest are Gershman, Ginzburg, and Denisov, 19 Pitteway, 1 Mitra, ke

Pisareva, =2 and Haselgrove. o)

-14-



SECTION IV

PROPAGATION IN INHOMOGENEOQOUS, UNIFORM,
MAGNETOACTIVE PLASMAS

Although our primary purpose is to review the problem of electro-
magnetic wave propagation in an inhomogeneous anisotropic (in particular
a magnetoactive) plasma, it will be useful to consider also the corresponding
isotropic case. F¥For an isotropic medium Ki' = Kéi., where K is now a
scalar point function and éi. is the Kroneckcr delta, the following two equa-

tions can rcadily be derived from (17) and (18):

vE - w(v: B)+ noKw DE=0 (37)
vt = [VK(w, 1) X (v X i)] + ngK(w, T)HH[= 0, (38)
K(w,r)

wherc (20) is used in obtaining the latter result. Only one of theae equations
nced be solved, because when either E or 7; is known, the remaining field
intensity can be found from the appropriate field equation, (17) or (18).
Although (37) is the equation most often used for this purpose, at times (38)

is more convenient, depending on the nature of the problem, as will be noted
later in this discussion. The general analysis of propagation in inhomogeneous
media can proceed in a number of directions, particularly in view of the
variety of assumptions for the function K{w,T) which are possible. We will
restrict our attention to plane-layered or stratified media, in which case

K = K{w,z). The propagation of waves in media whose properties are constant
on spherical (or cylindrical) surfaces is similar in many respects to that in a

plane-layered medium as observed by Ginzburg3 (Sections 34 and 36).

-15-



Consider now the propagation of a plane wave across an abrupt, plane
free space-plasma or plasma-plasma boundary, z = 0, with its wave normal
in the x-2z plane (at an angle GI to the positive z-axis in the region z < 0).
The applied magnetic field vector (Fig. 1) will, in general, lie in the x-~2z
plane and is assumed constant. Since the plasma is stratified (in the region
z > 0) so that its properties are functions only of z, all field quantities will
contain the factor exp(-ingpx sin GI) by virtue of Snell's law. We will omit
this factor in the present discussion in the same way that the time factor
exp(iwt) has been omitted. Thus, in the present formulation, 8/8x= -ino sin GI,
8/8y = 0, and 98/9z = d/dz.

When the applied magnetic field is zero, two independent problems are
of particular interest. If the electric field is parallel to the plane of incidence
(i.e., the x-z plane), the waves are said to be vertically polarized. Itis
convenient in this instance to work with (38) since the magnetic field vector

will have only one component H’y:

(nx&)y . 22
oA T +n =0 , 39
Hy o Hy *nod iy (39)

where qZ(z) = n*z(z) -s2=¢c®- X/U; S = sin 8 C =cos 8;. Few analytical
solutions of (39) are available (see Wiister and Forsterling, 16 Budden,4 and
Ginzburg3). The second problem arises when the magnetic field is parallel
to the plane of incidence. Such waves often are said to be horizontally
polarized since the electric field vector will have only one component Ey and,

using (37), we find:

" 2( _2<_) _
Ej +nglC” - G)E, =0 - (40)

E" +n2(l -3(-)E= o, (41)

-16-



where E can be taken to mean either of the components Ex or Ey’ the

corresponding components of 7 being Hy or H,, respectively.

For an inhomogeneous magnetoactive medium, Eq. (37) takes on the

more complicated form, already noted in (22):

2—. - ZA —
VE-vv- E+ngKlw,NE=0 (42)

where ﬁ(w, ?) is given in (21). A considerable simplification is derived from
the assumption of a plane-layered medium in that I/E = i\((w, z). Even with the
further assumption that the plane waves are normally incident on the layer,
we obtain two second-order equations involving both of the unknowns Ex and
Ey. This system is equivalent to a fourth-order equation for either Ex or
Ey, in contrast to the second-order governing equation (41) for the corre-
sponding isotropic layer problem. Exact solutions of the system of second-
order equations or equivalent fourth-order equation have been found only for

A
specific forms of K.

A detailed account of the general problem outlined in the preceding
paragraph is contained in what ionospheric investigators refer to as coupling
theory (see, for example, Budden,4 Chapters 18,19,20). The single fourth-
order equation referred to above has received little attention because of its

17 introduced two new variables for the case of

complexity. Forsterling
normal incidence and proceeded to obtain a pair of coupled second-order
equations that are more readily amenable to analysis. This work was
extended by Clemmow and Heading18 to include oblique incidence. Making a
change of dependent variables in the original equations (17) and (18), they
derived a new set of four first-order equations that can be solved using
several computational schemes or combined to form the more general pair of

coupled second-order equations. Another pair of equations was used by

-17-



Gershman, Ginzburg, and Denisov10 for the case of normal incidence with the
magnetic field applied in the x-z plane. This formulation is particularly
useful and, furthermore, is appropriate to principal problems of interest in
this study. When 6 = 0 or ©n/2 (Fig. 1), the coupled system may be rigorously
separated into two independent second-order equations. Both cases are of
practical sigrificance, particularly the former, and their solutions may be
used in perturbation analyses for values of 6 near zero and n/2. The basic
equations are introduced below; the present preliminary study of propagation

through inhomogeneous plasmas is based upon them.

For the case of normal incidence with B0 in the x-z plane, the general

equations (17), (18), and (21) may be reduced to the following system of

equations:
" 2 - 3 2
Fr + nOK_Fr = mOBFI 5
(43)
2.2 2
" =1 (3
Fl + noK+F! =) mOBFr ,
G =-L @ G, = -4 F (44)
r n r ! 1 n £ !
0 0
where:

2
X{Ys/2 -(U-XNUFY,)
K =1 - [zT 5 zL] , (45a)
UYT-(U-X)(U -YL)

2
XY /2
B T

= ) (45b)
2 =
UYL - (U - X)(U . YL)
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F =Ex+1Ey ) F£.=E - iE i (46)

0
L]
n
0
~
I

H_+iH -0+ iH . (47)
X y x y

Tweo coupled second-order equations (43) specify the wave functions Fr and

Fl 3

solved; then Ex’ Ey and Hx’ Hy are obtained from (46) and (47), respectively.

The functions Gr and Gl can be obtained from (44), after (43) has been

Note that for a homogeneous medium, assuming solutions of the form
I3 = F(l) exp(-m n z), ¢z F(l) exp(- mon “z) propagating in the positive
z- d1rect1on resulfs in two homogeneous algebraic equations for F(l) and F(l)
Setting the determinant of the coefficients equal to zero, we obtam the

Appleton-Hartree equation (29) by solving for niz in terms of K, and B.

The fact that B vanishes identically when YT = 0 (i.e., § = 0)allows us
to obtain exact solutions for a variety of electron spatial distributions. In
this case, there is no coupling and (43) reduce to the following two equations

for the propagation of the right- and left-handed circularly polarized waves:

" 2f X _
Fr+n01 TR Fr-O ,
L
(48)
2 X _
Fyt “o(1 - ﬁT?—)Fl = 0
L
If we let:
m —(U-Y)'1 -(U+Y)'l (49)
r i ’ My = E ’
then both Eqs. (48) can be written in the form:
. 2
F" + nO(l -mX)F =0 , (50)
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while both Egs. (44) can be written:

G =z -—F! . (51)

One might comment at this point about the nature of the polarization of
the two waves propagating in a magnetoactive mediumm. Here we assume that
the amplitudes and phase constants of E!' and E' are known and determine the
locus of Iﬁ'l = (E)'(Z + E;’Z)l/z

dependence has been reintroduced by means of the prime in accordance with

in the z = constant plane, where the time

Eq. (12). Eliminating the periodic factor between the expressions for the

two components, we obtain, in general, an ellipse in the x-y plane for the
locus of the vector whose components are E;( and E;’ The wave is said to

be elliptically polarized in this case. When the amplitudes of the rectangular
components are equal in magnitude and their phases differ by (2k + 1)r/2,
k=0, 1, £2, ..., the polarization ellipse degenerates into a circle and the
wave is said to be circularly polarized. It is customary to describe as right-
handed circular polarization a clockwise rotation of the electric vector when
viewed along the field, i.e., in the direction of propagation. Left-handed
circular polarization denotes a corresponding counterclockwise rotation. If
E)‘( and E;, have the same phase, the wave is linearly polarized; i.e., the
locus of E' in the x-y planc reduces to a straight line. The wave polarization
p = E'Y/ E;( is a complex number which may be conveniently introduced to show
how the transverse components of E vary with time. If p is real, for
example, E;( and E' have the same phase and the wave is linearly polarized.
If p = %i the polarization is circular, the minus sign identifying a clockwise
rotation of the electric vector, i.e., right-handed circular polarization. If p
is complex, the polarization is elliptical. In the present problem (YT = 0), if
we consider the F;_ wave, then FE being independent of Fr may be taken to
be zero and E;{ = iE'. Hence, p = -i and the wave F'r = E;( + iE;’ is right-

handed circularly polarized. By the same token, e E;{ = iE;’ would have

left-handed circular polarization.
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The mathematical similarity of Eqs. (40), (41), and (50) is quite
apparent. An equation of this same form appears in acoustics. Indeed it
appears generally in the theory of wave propagation, another classical
example of note being the Schroedinger wave equation for one-dimensional
motion in quantum mechanics. It is, in fact, a second-order linear, homo-
geneous, ordinary differential equation with variable coefficients and arises
often in mathematical physics. The generalized Lamé equation (see
Whittaker and Watsonlg) encompasses a large class of such equations, and
by a suitable treatment of the singularities one can arrive at the equations of
Mathieu, Legendre, Bessel, Weber, Stokes, etc. Since no solution can be
written in terms of known functions for an arbitrary functional form of the
index of refraction, particular cases in which this can be done acquire great
interest. Such solutions can be obtained when the propagation equation is
reducible to one of the aforementioned standard forms. In general, when this
is not the case, it is necessary to introduce the WKB approximation, when
applicable, seek asymptotic solutions, or employ numerical methods. Solu-
tions may be directly obtained when the WKB approximation is valid. This
procedure is briefly reviewed, therefore, at the end of the section. Expansion
procedures have been employed successfully in a number of instances while
high-speed computing machines may be used to implement the several numeri-
cal techniques available. More specific reference to these approximate pro-

cedures will be made following the discussion of the WKB method.

In the following summary we will review the known exact solutions for
the cases of: (i) horizontally polarized waves, oblique incidence, no magnetic
field [Eq. (40)]; (ii) normal incidence, arbitrary polarization [Eq. (41)]; and
(iii) circularly polarized waves, normal incidence, normal uniform applied
magnetic field [ Eq. (50)]. The primary purpose of the review is to outline
the solutions for the wave forms propagating in inhomogeneous plasmas. The
determination of reflection and transmission coefficients will depend then on
the nature of the specific boundary value problems of interest. This will
involve the solutions for the wave forms propagating in each medium,

characterized by its index of refraction, and the requirement that F, for
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example, and F! [in view of (51)] be continuous at the interface that
separates two media. If the inhomogeneous medium (z > 0) extends to
infinity, it is necessary to disregard the waves that propagate in the negative
z-direction determined from the asymptotic behavior of the solution for
large z. This boundary condition is based on the physical reason that no
source of energy exists at infinity. Reference will also be made in the
summary to detailed solutions of boundary value problems which have been

obtained.

Exact solutions of the propagation problems described above have been
obtained for various assumed functional forms of the index of refraction itself
as well as separately for X(z) with Z = constant and, in a few cases, Z(z)
with X = constant. In general, the utility of these formal solutions is limited
by the difficulty in abstracting numerical results since the arguments and/or
orders of the special functions involved are complex numbers. Considerable
information can be obtained, however, from the limiting forms of the solution
for small and large values of the arguments. Although extensive quantitative
results also can be obtained to any desired accuracy by solving the equation
numerically, analytical expressions are particularly useful, if available, for
the general analysis of propagation in inhomogeneous plasmas. Further, it
should be remarked that although a surprisingly large number of exact solu-
tions have been derived, a detailed quantitative analysis of the reflection and
transmission coefficients and of their specific dependence on the physical
parameters of the problem is given in only a few papers. Recent interest in
transmission problems arising in space programs and laboratory plasma
studies has resulted in a number of papers which provide such information
with varying amounts of detail. There is often no reference in these papers
to previously obtained general solutions for the inhomogeneous plasma and
the corresponding related, if not equivalent, boundary value problem. This
is due, in part, to the fact that many of these solutions were presented in the
magneto-ionic literature. Indeed, our present purpose is to review the

various known solutions for possible use in several different fields. In this
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regard, it is recognized that the appropriate geometry may differ markedly
for different applications. In ionospheric work, for exaniple, propagation
across an inhomogeneous layer separating frec space and a homogeneous
medium is analyzed with principle emphasis given to the study of reflection.
In the plasma physics applications noted above, both bounding regions are

often assumed to be free space and both reflection and transmission are of

interest.
The function w(z) will be used to represent the unknowns E‘/’ E, or F
in Eqs. (40), (41), and (50), respectively. Hence:
w'+nia’w =0 ,  Q¥z)=n¥’(z)-s°=ct-mx (52)

where m is defined in Eq. (49), either with or without an applied magnetic
field, and C =1 (normal incidence) in the magnetoactive case. The inhomo-
geneous plasma solutions, therefore, will apply to all three cases on this
basis. Reflection and transmission coefficients (referred to as R and T,
respectively, in the outline) are also applicable to each problem even though
the reference work may have been concerned with one case in particular.

For this purpose, it is convenient to assume that the incident wave is linearly

polarized along the x-axis. Unless otherwise stated Z is taken to be constant.

1. Linear: X(z) = a(z - zo).

.y o 2/3
Substitution, § = -C (no/am) [1

= (am/CZ)(z - zo)], results in
Stokes' equation, dzw/dg2 = £w. General solution expressed in terms of Airy
functions, w = c(l)di(g) + C(Z).(Bji(g). Alternatively, let (2/3)&,3/2 = il

= t_.}/3v, to obtain Bessel functions for the solution,

w
VA= ('(I)Jl/3(§) + C(Z)J_1/3((_,). The basic inhomogeneous plasma solution
appears in a number of references along with expressions for R and T for
the simplest boundary value problem of interest defined in Fig. 2a. Problems
2b and 2c¢ were considered by Hartree?? for v = 0, with particular attention
given to R. Recently, detailed calculations of R and T have been made for

2b through 2e by Albini and Jahn?! assuming Y =0, C = 1. Hermann?
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considered 2a for Y = 0, C = 1 and derived a useful approximate procedure.
’I‘aylor23 determined R for 2b using a formulation based on the transmission

line equations, but detailed numerical results were not presented.

2. Square law: X(z) = a(z - ZO)Z'

Substitufion, £ = (4n3am)1/4(z -zg), k+1/2 = (4n5am)'1/2ngcz,

results in Weber's equation, d?'w/dé?' +(k+1/2 - gz)w = 0, and the general
solution, w = c(l)Dk(é) + c(Z)D_k_l(é). Problem 2f has been considered by
Hartree, 24 Wilkes, 25 and Rydbeck.?‘6

3. Parabolic: X(z) = Xl[l - (z - zl)zlzg], |z -zll Lz
1/4

0"
. . 2 2
Substitution, § = (-4n0mX1/z0)

-I/Zné(cz - le), results in Weber's equation (ibid. ).

(Z = zl):
k+1/2= (-4n3le/z3)
Problem 2g was considered by Rydbeck?-7 and Pfister.28

4. Exponential;: X(z) = exp(az).
Substitution, § = (Znomll?'/a)exp[(az +im)/2], k = ZinOC/a,

results in Bessel's equation, €,?'d2w/d€,2 + Edw/dE + (é?' - k?')w = 0, and the
general solution, w = c(l)Jk(é) + c(Z)J_k(é). This problem has been examined
29

by a number of authors. Stanley“’ obtained the solution for ionospheric
propagation as a limiting case of Epstein's30 method. The following distribu-
tion is more appropriate to many applications in plasma physics and is

considered later in this report: X(z) = Xoo + (Xo - Xoo)exp(-az), z > 0(a > 0).

5. Trigonometric: X(z) = (Xll?‘)[l + cos ('rr/zo)(z - zl)],

Iz - zll 2z Change of independent variable gives Mathieu's equation;

0
however, a numerical solution of 2h can be used conveniently to compute
values of IRI , as noted by Budden.? Unlike (3), X'(z) is continuous at

Iz - zll =z This is found to be useful in ionospheric applications.

0
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6. Hypergeometric: X(z)=1 - m-l{S2 te 4+ eg(eg + 1)-2 X

[(e, - e Ne® + 1)+ e }E = (2/a) + B, € = ~(c - 1)%/4n2a?,

2
= -(a - b)*/4n}d, €;=(atb-c+1)a+thb-c- l)/4n(2)a2.

General solution is expressed in terms of hypergeometrie

)

funetions. A number of interesting distributions, known as Epstein profiles,
aTe ineluded in this ease. The details are given in Epstcin's30 elassieal
paper for an isotropie medium. Of particular note also is the useful
procedure for obtaining reflection and transmission coeffieients for an

Epstein layer. The following special cases are generally singled out:
a. X@E)=m c? - 12(e, + c?) - (1/2)(e, - C%) tanh [(z - 2))/2al} .

b, X(§)= -(1/4m)e, sech’ [(z - = )/2al.
7. Inverse square law: X(z) = z_Z.

1/2

Transformation, w = z v, results in Bessel's equation and the
general solution, w = c(l)zl/ZJ (noCz) + C(Z)ZI/ZJ_ (noCz),p =[(1/4) + ngm] 1/2_
Taylor3’1 examined this problerrri, assuming the incigent wave to be propagating
from z = +o0. The asymptotic expansion of J is used to satisfy the boundary
condition at +o and to determine R. The more customary problem in which
the wave is incident at z = 0 propagating into the plasma region z > 0,
where X(z) = (z + a)_Z, a > 0, is also of interest. The inhomogeneous
plasma solution given above may be modified readily in this case and the

appropriate boundary conditions may be applied.

k .
. a i
8. Polynomial: X(z) = Z a.z
i=0
General infinite series solution for E (z) was formally obtained
by Taylor32 with primary attention focused on R. Specific consideration

given to quadratic, X(z) = a,z+ azzz.
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9. Periodic: X(z) = X(z + a).

Expand X into a Fourier series and seek Fourier series solution
for w. Vassiliadis33 formulated the general procedure for determining the
coefficients in the series for the electric field and examined specifically
P = (XO/Z)(l + cos 2mz/a), but did not consider a particular boundary value
problem. His simple variational approach in obtaining solutions is also of
interest.

10. Generalized power law (normal incidence): n*z(z) = az(l + az )1,
£ £ -2. The general solution can be written in the form, F = (1 + o.z)llzv,
where v is a Bessel function of order p and argument ¢, p2 = (£ + 2)'2,
Er= Zno(ap/u)(l + az)(! i 2)/2.

will depend on the boundar'y value problem. To satisfy the condition at

The appropriate form of the general solution

z = +oo in the semi-infinite case (assuming the imaginary part of a to be
negative), the assumption £ > -2 would require the use of the Hankel function
of the second kind while £ < -2 would require the Bessel function of the first
kind of order p = -({ + 2)-1. A number of such solutions (for £ = -1, the
expression for n*2 may contain an additive constant) have appeared in the

ionospheric literature (see Ginzburg3).
11. Exceptional case, £ = -2: n*z(z) =c(b + z)-z.

This case is of particular interest because the solution can be
expressed in terms of elementary functions, F = c(l)(b + z)rl + c(z)(b + z)rz,
= 1/2 % (1/4 - ngC)I/Z.

T, Ginzburg points out the following solution to
problem 2i: R = (i/2)(nja + By L, = [(nya)?® - 174112, nga > 1/2. In the
WKB limit, n,a >> 1 and B ¥ n,a such that R = i/4n0u = i)\o/Sn'u =
-(i)\O/STr)(d/dz)(n*Z)|z=u, evaluated in the plasma.

12. n*z(z) = (az + b)/(cz + d)s, normal incidence.

The general solution was obtained by Penic:o:‘}4
F = (cz + fcMail-D72/3(az + b)Y (cz + )] + <13i[-D72/ 3@z + b)/ca + a)l}.

where D =ad - bc. No particular boundary value problem was considered.
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13. Variable collision frequency, constant X.

A few solutions have been obtained. In each case, Z was assumed
to be a decreasing function of z, and very little quantitative analysis of the
effect on propagation is presented.

a. (-1) power law: Z(z) = a/z.

Change of independent variable results in Gauss' equation

with the general solution in terms of confluent hyper-

geometric functions. Wilkeszs examined this problem
briefly.
b. Exponentjal: Z(z) = a exp(bz)}(b < 0).

This distribution has been derived from the Epstein profiles.

The exact solutions summarized above were used by the referenced
authors to analyze propagation in inhomogeneous plasmas for various
applications. Often these analyses were intended to provide a general
examination <f the problem and only limited quantitative information was
obtained. As we have already noted, even if the assumed form of the index
of reiraction is appropriate to a specific problem of interest, detailed
numerical results are difficult to obtain from the formal soluticns without
resorting to the use of high-speed computers. In addition, it may be
necessary to contend with more general forms of the index of refraction.
Various approximate procedures and analyses, which apply to these situations
as well as to more complicated propagation equations than (52), will be

discussed briefly in the remainder of this section.

The WKB analysis is a particularly useful means of obtaining approxi-
mate solutions. To demonstrate the mathematical procedure, as well as
complete the discussion of the physical significance given in the preceding
section, we shall now consider the WKB analysis of Eq. (52). The substitution
w = exp(fvdz) gives rise to a nonlinear Riccati equation for v(z). Assuming

that qz(z) is a slowly varying function, we can derive the following
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approximation to the general solution of (52):

_ ~-inp fqdz _ in, fqdz
w=c(l)q l/Ze OI +c(2)q l/Ze Of (53)

valid over an interval for which:

1
—~ << 1 . (54)
o

The corresponding solution for G, for example, would be obtained from (51).
The '"'slowly varying' character of the plasma properties and the so-called
reflection points are formally specified by (54) in that q' and g" must be

sufficiently small while q cannot be too small.

The WKB solution (53) can be employed as a mathematical expression
of ray theory in the following way: The governing equations for w and u
[where the function u(z) represents H'x’ H, or G corresponding to the values

Ey’ E, and F for w] are obtained from (17) and (18):

u ; u' =n g w . (55, 56)

(1) (2) (1)

+ u(z), the

first traveling in the positive z~-direction, the second, in the negative

Separate w and u into two parts, w = w +w and u=u

z-direction. Using the characteristic exponential form of the solution for a

homogeneous medium for u, we reduce (56) to u(l) = iqw(l), u(z) = -iqw(z).

Substituting these expressions into (55), we obtain two coupled second-order

(1) (2)

equations in w and w The first approximation to the solution of this

system neglects the coupling, and (53) follows from the resultant two inde-

(1) and w(z). Whenever the index of refraction is

pendent equations for w
varying locally, a reflection process is taking place in which one wave can

generate some of the other as shown by the coupling in the two equations for
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(1)

W and w

(2},

The physical processes described at the conclusion of

Section III are thereby clarified mathematically, and the resultant formal
solution and limitation are expressed by Eqgs. (53) and {54), respectively.

It should be noted that the coupling process referred to in this discussion is
between the waves (either F.or F, in the magnetoactive case) that are
propagating in the positive and negative z-directions. This is quite apart
from the so-called coupling theory in magneto-ionics between the right-

and left-hand waves propagating in one direction. The solution of (50) for Fr
and F, separately or of the more complicated Eqs. {43), in which both waves
are coupled, can be obtained by means of the WKB approximation, ifapplicable.
The WKB analysis described above adequately provides the mathematical and
physical considerations required in this study. More general presentations

of this classical subject are readily available in the literature {see Ginzburg, e

for example).

The WKB method and the related phase integral method which applies in
the vicinity of reflection points {(see Budden, 5 Chapter 20, for example) have
been employed in the analysis of a variety of problems and applications. The
numerical evaluation of such solutions or, as we have previously noted, of
existing exact solutions has been considerably simplified by the advent of high~
speed computers. Indeed, in this way the solution of even more general
propagation problems has been realized, although analytical expressions and
their inherent advantages are not provided. Budden? outlines the general
principles underlying the computational procedure for integrating the ordinary
differential equations that govern the reflection of a plane radio wave from a
horizontally stratified (magnetoactive) ionosphere. The numerical analysis of
boundary value problems of present interest is considered in several mathe-~
matics references. In the following discussion, reference is made to several
papers in which specific calculation procedures are set forth. The principal
purpose of this discussion is to take note of analyses of Eqs. (40), {41), or
(50) for more general forms of the index of refraction than were considered

above as well as work which has been done in connection with Eq. (39).

=G~



Following this, brief consideration will be given to several approximate
mathematical procedures which, along with the WKB method, have been used
to analyze related but somewhat more general propagation problems.

Tyras and Held35 considered the problem of normal incidence into a

stratified, lossy, magnetoactive plasma that is assumed to consist of a
number of homogeneous layers of arbitrary thickness. No particular pattern
for the electron density and collision frequency variations is assumed. Both
the cases § = 0 and § = T/2 are examined, and the results are left in general
form, suitable for high-speed computer calculations. Once programmed,
numerical results can be obtained quickly. A representative model of a
re-entry type of inhomogeneous plasma was assumed by Harley and Tyras36
who used this numerical procedure to make illustrative transmission calcula-
tions. The primary purpose in using a numerical approach is to obtain
detailed quantitative information for a specific problem including complicated
variations of N(z) and wc(z). The general effect of the several parameters
of the problem on transmission is not shown due to the limited number of
cases. Itis found, however, that the best improvement in transmission is
obtained when the magnetic field is applied in the direction of propagation (as

would be expected) and the incident wave is circularly polarized.

Several methods have been proposed for solving the general problem of
plane wave propagation through a plane-layered medium. Reference was made
above (see also Levy, 3 for example) to detailed analyses in which the plasma
was assumed to consist of a stack of homogeneous layers. In this case, the
well-known matrix method or sandwich formulas can be used. The problem
can also be formulated as an integral equation and approximate solutions
obtained by iteration. Variational techniques have been derived, and the
Riccati equation formulation has been considered. It would appear to this
author, however, that the differential equations are suitable for standard
numerical analysis procedures when extensive quantitative results are desired.
Thus, the field intensity can be obtained by step-by-step numerical integration

from which the reflection and transmission coefficients are readily determined.
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Richmond, =8 for example, outlined this technique both for problems of
normal and oblique incidence (B0 = 0). Although he considered inhomogeneous,
dielectric, radomes (the application is itself worth mentioning in this review),
the detailed procedure clearly is applicable to the present problem of lossy
plasmas. Excellent agreement between approximate and exact solutions was
obtained for the assumptions of constant, linear, and exponential variations

in the properties of the medium. Klein, et al., 9 treated this same problem
for the case of a semi-infinite plasina. The normal incidence problem was
solved by numerical integration in the region of rapid variation of electron
density and by the WKB method outside this region. Computations were made
for a large number of cases where the electron density distribution was
assumed to be exponential, for the sake of convenience. A numerical pro-
cecdure was employed to solve the problem of oblique incidence (provided the
incident wave is not too close to normal incidence) and calculations were made
assuming Z and )\o small. It should be remarked that this analysis was not

restricted to the problem of horizontal polarization only.

We have discussed at some length in this section the problem of finding
solutions to Eq. (52) and, as a result, to a number of propagation problems
of interest. For certain forms of the function qz(z), (52) can be transformed
into one of the classical equations of mathematical physics, and exact solutions
were said to have been obtained in the sense that they were expressible in
terms of known functions. One might well refer to the general theory of
series solutions of (52), in terms of the behavior of qz(z), which includes
these special functions, to formalize the mathematical analysis. The
numerical analysis of this equation for the same or more complicated forms
of the function is also exact in that any desired accuracy can be ohtained for
the solution without restricting the parameters of the problem. No analytical
expression would be available. By the same token, more general problems
than (52) could, in principle, also be solved numerically. The over-all
evaluation and interpretation of an even greater amount of data and the inherent

difficulty of the appropriate equations would limit this approach to restrictive
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cases of specific interest. The WKB and phase integral methods have been
employed to obtain approximate solutions for more general problems of
interest. Perturbation solutions of Eq. (43) have been examined for values
of § which are close to 0 or /2 (see Ginzburg3). From the literature on
coupling theory, we find that solutions of the Férsterling equations have been
obtained by successive approximations (see, for example, Gibbons and

40, 41). Budden and Clernmow42 used the formulation proposed by

Nertney
Clemmow and Heading18 to obtain solutions; in particular, the system of
first-order equations was derived for the cases of normal incidence, oblique
magnetic field and oblique incidence, normal magnetic field and approximate
solutions obtained assuming the coupling terms small. Recently, Cohen
extended coupling theory to nonuniform, plane-layered, magnetoactive media.
WKB solutions were obtained for the two limiting cases of negligible and
strong coupling, as defined by Forsterling, assuming that X, Y, Z << 1.
Note that solutions often can be obtained by appropriately restricting the
range of the three characteristic frequency ratios. Several interesting

AdnAs Poverlein,46 Wi]kes,47 and

examples of such analyses are, Heading,
Heading and Whipple.48 The references noted in this paragraph illustrate,
in a rather abbreviated manner, procedures usec and results obtained for
more general propagation problems than (52). We have focused our primary

attention, in this report, on those problems which are governed by Eq. (52).

-32-



SECTION V

THE EFFECT OF AN APPLIED MAGNETIC FIELD ON PROPAGATION
THROUGH A HOMOGENEOUS PLASMA SLAB

The initial quantitative ireatment of the effect of an applied magnetic
field on propagation in re-entry communication problems has been made by
various authors using the simplified model of a homogeneous plasma. An
indication of this effect may be obtained from the complex index of refraction
as was noted in the paragraph following Eq. (31). Some results were ob-
tained on this basis in the early investigation of Bachynski, Shkarofsky, and

U 3 for example. A somewhat better estimate of the problem can

Johnston,
be obtained from the consideration of propagation across a single interface.
Numerical results were obtained for this semi-infinite case assuming normal
incidence and normal applied field by, for example, Bachynski, Johnston,
and Shkarofsky, 51 Fante, =5 and Hodara. 22 French, Cloutier, and
Bachynski54 studied some general aspects of the problem with the magnetic
field both parallel and normal to the propagation direction. Their observa-
tions on the existence of very low-frequency "windows' due to the ion cyclo-
tron mode represent a possible application which is still to be explored and
merits additional consideration. Graf and BachynskiF55 included in their

analysis the effect of the orientation of B and the polarization of the incident

0
wave.

Additional results of a similar nature have been published both in
company reports and in journals. In this section, we shall consider a homo-
geneous plasma slab, assuming the incident wave and applied magnetic field
to be normal to the slab. Detailed parametric calculations were made to

determine the combined effect of Y, X, Z, and L/\, on transimission.

0
Specific exemplary flight conditions were examined on this basis also, as was

the initial consideration of a proposed experimental shock-tube program.
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A. General Solution and Discussion of Parametric Results

Consider a homogeneous plasma slab of thickness L separating the free
space regions z< 0 and z > L. A linearly polarized (say, along the x-axis)
plane wave is normally incident on the abrupt free space-plasma boundary
z = 0, and a uniform magnetic field is applied in the direction of propagation.
The solution to the governing equation (50) for the propagation of both the
right- and left-handed circularly polarized waves in the plasma region

0< z< Lis given by:

-in_ n¥*z in _n¥*z
g + c(4)

Fizh= cle) Eatl L =1 -mx)% L (7

In the free space regions z< 0 and z > L, respectively:

(58,59)

Continuity of F and F' [in view of {51)] at the two interfaces z = 0and z =L

(1)

leads to four equations for the amplitudes ¢ throug.h c(s) from which the

following expressions for the reflection and transmission coefficients can be

derived:
2 in nk 22 i
c(2) (n¥7 - 1) exp(-inyn*L) + (1 - n*") exp(in n*L)
R = (1) = ) 3 D (60)
¢ (n% + 1) explingn*L) - (n* - 1) exp(-in n*L)
(5) 4n* exp(in,L)
T =S 0 (61)

D (nx + 1)? explingn¥L) - (n* - 1) exp(-ingn*L)

0

Separate results are obtained for the right- and left-hand waves, using the

appropriate value of n*. Evaluating the real part of the complex Poynting
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vector in the free space regions z > L and z < 0, we obtain the following
expressions for the ratio of the transmitted and reflected energy to the

incident energy:

1 (2 2 21 2 2
er =0T P +IT,?) . eg=(RIPHRF) L (62,63)
A detailed calculation of the reflection and transmission coefficients
{magnitude and phase) for both waves has been made covering a wide range of
the three frequency ratios and the ratio L/)\O. We will be interested prima-
rily in transmission for the parametric analysis of the problem in this sub-

section. The degradation in transmitted energy:

dby = 10 log, ;e , (64)

was obtained for L/)\O =0.5 1, 2, 4 with0.01<Z<1, 0.64<X<400, and

0<Y < 100. From the graphs of db,. versus Y {Figs. 3 and 4 are included

T
for illustrative purposes), we can determine useful crossplots of X versus Y

at constant values of db say, -15, -10, and -5, with Z and L/)\O as

parameters. The deperrlrdence of de on the applied magnetic field, which
will, of course, be affected by the values of the parameters X, 7, and L/)\O,
can be observed first in Fig. 3a. Itis immediately apparent that when X is
of order one (in particular, note X = 1.21, 1,44, 2.25, and, to a lesser
extent, 4) de is strongly dependent on Y. This is indicative of the significant
improvement in transmission that can be derived for relatively small values
of Y. The dependence is much less pronounced for larger values of X,
especially as the magnitude of de is decreased. Qualitatively similar
results are shown in Fig. 4a; however, it is clear that the increase in Z
generally decreases the favorable effect of Y. These observations will be

discussed in greater detail below.

The principal factors that were introduced above can be conveniently

examined in some detail from the constant de curves of X versus Y shown in
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Figs. 5 through 16. To elaborate further on the previous general
observations, we first consider Figs. 8, 9, and 10 for L/)\O =1, In the
latter figure (Z = 1) for X = 1. 44; dbp = -15, -10, and -5 is obtained when
Y
(f

and even in the microwave region (say f = 1 kMc), the maximum value of

0.95, 1.6, and 2. 75, respectively. With telemetry frequencies

240 Mc), field strengths of the order of severalhundred gauss are involved,

1000 gauss corresponding to 5 db is still quite practical. Note that a 68-per-
cent increase in field strength is required to improve transmission from 15
to 10 db, while an additional increase of 72 percent would result in 5 db. As
one would expect, larger values of Y are required when the electron density
of the plasma is increased. Thus, for X = 100, corresponding values of

Y = 10.5, 16, and 41 are obtained. The magnetic field strengths are an
order of magnitude larger than in the preceding example, a maximum of

14, 600 gauss being needed to obtain 5 db for the microwave application,
Although a 56-percent increase in Y will reduce the loss from 15 db to 10, a
further increase of 256 percent would be required to go from 10 to 5 db.
{Corresponding values of 83 and 326 percent are obtained when X = 400.)

0.1

Decreasing the collision frequency by an order of magnitude to Z
(Fig. 9) resulted in a reduction of the magnetic field required by as much as

a factor of 3. Although the required magnetic field generally is still lower
for Z = 0.01 (Fig. 8), the resonant conditions are quite pronounced in this
case, and the preceding trends are substantially modified in certain instances.
Increasing the slab thickness would, of course, degrade the transmitted
signal. A uniform increase in Y over the above results is obtained at

L/)\O =4, for Z = 1, as shown in Fig. 16. The combined effect of the several
parameters is complicated by the aforementioned resonant conditions in this
case for Z = 0.1 and 0. 01; detailed results are given in Figs. 15 and 14,
respectively. In Figs. 5, 6, and 7 L/)\O = 0.5 is considered, while, to a

lesser extent, LL/\ . = 2 is considered in Figs. 11, 12, and 13.

0
A substantial improvement in transmission can be derived, in many

cases, through the use of relatively small magnetic fields. Clearly, as we
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have seen, this depends on the values of L/)\O, X, Z, and f involved. Of
particular significance, however, is the benefit still to be derived from the
application of reasonable fields if one accepts as great as 10 to 20 db degra-
dation in the transmitted signal, this in contrast to the requirement of an
order of magnitude larger field for the same condition when near complete
transmission is sought {as was done in a number of early rough estimates).
This is due to the fact that the variation of de with Y is considerably more
gradual for lower values of de, particularly when X >> 1. In this regard,
it should be observed that particular attention must be given to such effects
as inhomogeneities and nonuniformities if improved estimates of de are to
be obtained since the difference in the resultant prediction of the required

field may be significant.
B. Evaluation of Several Re-entry Applications

The homogeneous plasma slab boundary value problem outlined above
was used also to estimate transmission in several exemplary re-entry
situations. The effect of an applied magnetic field is determined thereby for
particular applications of interest. In the first case, a 10-degree half-angle
cone was considered at zero angle of attack with the flight conditions shown
in Fig. 17. An equilibrium boundary layer analysis was made to determine
the maximum enthalpy and temperature, from which the plasma properties
were obtained. We computed the boundary layer or slab thickness using the
inviscid flow properties, assuming the actual cone wall temperature to be
1500°K and the axial length, 11 feet. The results are shown in Fig. 18.
Despite the fact that the plasma is highly overdense in most of the cases,
transmission is obtained due to the correspondingly small values of L/)\O
involved. The determination of transmission for each flight condition is

greatly dependent on this '"skin-depth" effect.

Before discussing the present results, a reference level of acceptable
transmission must be established. Since this value is often difficult to
ascertain, even for current applications which are well along in the develop-

ment phase, it will be necessary to base our remarks on several possible
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assumed values. We shall consider below the telemetry frequency,

f = 240 Mc, assuming re-entry velocities of 26,000 fps {(Fig. 19) and 23, 600
fps (Fig. 20) and the microwave frequency, f = 3 kMc, with u = 26, 000 fps
(Fig. 21). If 10 db degradation in transmitted energy is acceptable, no
magnetic field is required in the second case (Fig. 20) since the maximum
loss is 9. 75 db at 150, 000 feet. If, however, a maximum of 5 db is allowed,
then ''blackout' should occur at both 100,000 feet and 150, 000 feet. Although
the 150, 000-foot condition is more critical than the 100, 000 with no magnetic
field, we should take note of the particularly strong dependence of de on the
applied magnetic field in the former case. Thus, 250 gauss is required to
eliminate ''blackout" at 150, 000 feet while 600 gauss is needed at 100, 000
feet. The more severe re-entry condition with u = 26, 000 fps (240 Mc) is

T = -25. 6
for B, = 0; 600, 1200, and 2650 gauss would be required to obtain -15, -10

0
and -5, respectively. At 100, 000 feet, de = -16. 8 for BO = 0, whereas

shown to be qualitatively similar in Fig, 19. At 150,000 feet, db

larger field strengths of 1200, 3600, and 7800 gauss now are required. If

the allowable loss is reduced farther so that the magnitude of db.. is 4 or

T
less, the 50, 000-foot condition would be critical and even larger fields would
be required since the corresponding curve is more gradual than the 100, 000-

foot case. Comparative values for f = 3 X 109 cps are given in Fig. 21.

The favorable effect of an applied magnetic field on re-entry communi-
cation is shown for a number of practical conditions of interest in the tabu-
lated values of Fig. 18 along with Figs. 19, 20, and 21. A preliminary
analysis of the boundary layer region on a 10-degrece cone clearly indicates
the existence of electron density gradients in the direction of propagation.
The magnetic field required to provide a specified acceptable level of trans-
mission can be reduced substantially when the more realistic inhomogeneous

plasma is included; this will be examined later in this report.

Blunt body-stagnation point calculations were also made for several
typical re-entry conditions. The assumption of a homogeneous plasma slab

is quite appropriate in this instance. The stagnation condition gives rise to
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large values of the plasma and collision frequency. In the extreme case
considered, fp is of the order 1012 cps and fc of the order lO12 to 1013 cps.
With no applied magnetic field, losses in excess of 30 db are obtained with
frequencies of 240 Mc to 30 kMc. Since X, Z >> Y in this case, even for

BO = 100, 000 gauss, the magnetic field is of no practical value. When the
maximum values of f and fc are of the order of lOll cps, transmission can
be increased to "satisfactory' levels; however, field strengths of the order
of 50, 000 gauss would be required. The practical use of a magnetic field
becomes more apparent when f < 5X 10lo cps. For f =30 kMc significant
improvement in transmission is derived from the application of 5 to 10, 000
gauss while 25,000 gauss is required for this purpose when f = 240 Mc. The
discussion is intended to be qualitative in this case and to bracket the general
results of interest inasmuch as the use of blunted re-entry vehicles has been

reduced greatly in recent years.
C. Formulation of a Meaningful Experimental Program

The immediate purpose of an experimental program for the present
problem is essentially three-fold: to obtain quantitative results on the effect
of an applied magnetic field on propagation, to correlate these results with
theory to the extent possible, and to investigate related problem areas
suggested by the previous theoretical considerations. The end purpose is
to enable prediction of propagation for several applications of interest. In
the re-entry cone application, for example, the functional form of the elec-
tron density distribution may be complicated and variations in collision
frequency may be of importance. The theoretical problem may be compli-
cated further by the requirement of oblique incidence, the practical existence
of a nonuniform, applied (as well as induced), magnetic field, and transverse
gradients of the plasma properties. In view of the intractable nature of such
a problem, as well as our inability to accurately measure or compute the
plasma properties, it would seem that an experimental flight program would
be of limited general value. Thus, specific information could be obtained for

a set of actual flight conditions, but, the results could not be generally
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interpreted so as to evaluate theoretically some other flight case. It would
seem reasonable, therefore, to attempt a definitive controlled laboratory
experiment. An idealized experiment can be formulated for which analysis
is possible. General information can be obtained from such a correlation.
However, theoretical estimates of an actual flight problem may still require
additional laboratory experiments and analyses on the several complex

conditions noted above.

There are several ways in which the proposed laboratory experiment
can be approached. Related work has been done in the field of plasma

61, and Betchov and Fuhs, 58 to name a few. The inter-

diagnostics by Jahn
action of microwaves with plasmas has been studied experimentally from
several points of view by Daiber and Glick, =5 Rao, Verdeyen, and

Goldstein, go and Jones and Gould. il The transmission problem has been

examined to some extent by Lueg and Wood, 62 Rothmann and Morita, 63 and
Delosh, 2 as well as in several company proposals. The shock tube has
been used in the study of plasma diagnostics. In addition, shock-tube
techniques and theory have been developed to a point where the generated
plasma is well known. With this basic prerequisite for the formulation of a
meaningful experimental propagation study, the shock tube is a good choice

for the plasma source. It also enables one to employ a representative

analytical model which can be solved to interpret the experimental results.

The homogeneous plasma slab solution can be used as a guide now in
the initial evaluation of a possible shock-tube program. The underlying
physical model is appropriate for the present purpose, and preliminary
calculations of the boundary layer indicate that the inhomogenecous region is
small. Properties of shock-tube-generated plasmas (in argon) were com-
puted using Refs. 65 and 66, and are shown in Figs. 22 and 23. It should be
noted that although the collision cross sections of both the neutral atoms and
the positive ions were included in the computation of collision frequency, the
author has not established that the reference work represents the latest infor-
mation regarding this difficult calculation. The data shown will be satisfac-

tory, however, for the present purpose,
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Both the plasma and collision irequency can be varied by several orders
of magnitude for the range of Mach numbers (6 to 9) and pressures shown.
Although the desired values of plasma conditions are thus readily obtained,
the futility of even contemplating such an experimental program without the
benefit of some preliminary analysis may be demonstrated easily. It is not
our purpose at this time to consider the problems involved in any detail but
rather to employ reasonable theoretical results to aid initial thinking along
these lines. On this basis, the homogeneous plasma slab analysis may be
used to point out the following useful results. It is desirable when working
with microwave receivers, in general, to restrict both the transmitted and
reflected power levels as follows:

0.05< £0.95 1 0.05%¢,5<0.95 . (65)

€ R~
At the same time, good experimental procedure dictates that neither very

small nor very large gradients in these quantities be permitted. Hence, we

will also stipulate that:

deT deR 3

- ; 3% > 0. 05 . (66)

In this manner, a minimum variation is assured for the purpose of inter-
preting the experimental results. Excessively large gradients (for example,
near-resonant conditions) which would place an unnecessary burden on the
results in view of the expected errors and uncertainties of the problem are
also ruled out. Imposing these constraints on the numerical evaluation of

Egs. (60) and (61), we obtain the results shown in Figs. 24 through 37.

Figures 24 and 25 show plots of Z versus X for Y = 0 and 0. 5,
respectively, with L/)\O = 4, The corresponding shock-tube data are
presented, assuming f = 24 kMc, for an initial pressure of 1, 5, and 15 cm

and parametric values of the shock Mach number. Transmission and
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reflection data are not required simultaneously for diagnostic purposes,
although the additional information thus provided is of definite value. Both
results are of interest, however, in the study of propagation, with particular
emphasis given to the transmission. The acceptable regions defined by (65)
and (66) are clearly shown in these graphs. The largest region of overlap in
which both transmission and reflection data can be obtained occurs when

P, = 1 cm. By the same token, however, the permissible range of values of
MS is sharply reduced for this condition. Thus, for Y = C (Fig. 24), there is
no overlap region for P, = 15 cm, while meaningful data can be expected for
transmission when 6. 5 < MS < 7.1 and for reflection when 7.1 < MS < 7.7
For P, = 1 ¢cm, the separate Mach number ranges are sharply reduced while
an overlap region does exist for 7.3 < Ms < 7.5. The same qualitative trends
are found when a magnetic field is applied. Some overlap region appears
when P, = 15 cm, for Y = 0.5 (Fig. 25), while transmission and reflection
data can be obtained for the range 6.4 < MS < 7.2and 7< MS < 7.8, respec-
tively. Both intervals are reduced once again at P, = 1 cm, and a somewhat
broader overlap region of 7.2 < Ms < 7.6 is obtained. Thus, the magnetic
field tends to increase the acceptable number of shock-tube conditions in this

case.

Having examined the required shock tube conditions on this basis, let
us include the corresponding detailed propagation calculations. In Figs. 26
through 30, € T and ER are plotted versus Y (or Bd) for these cases. In the
presentdiscussions we will assume, somewhat arbitrarily, a maximum prac-
tical value of 10, 000 gauss. For Ry € 15 c¢m, useful experimental results may
be expected, with respect to transmission (Fig. 26), up to a Mach number of
7.3 (an approximate limit of X < 2 is implied). Larger values of Ms’ and
therefore X, can be examined from the reflection data (Fig. 27). The so-
called reversal effect, when an increase in magnetic field results in a de-
crease in er and an increase in €R’ is quite apparent, and experimental
information may be obtainable. A qualitatively similar situation is shown in
Figs. 28 and 29 for Py = 5 cm, while several overlap conditions are illustrated

in Fig. 30 with P, = 1 ecm.
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Fixing L/)\O = 4 once again, for convenience, we shall consider briefly
f = 15.8 kMec. The propagation results remain the same since L has been
correspondingly increased; however, the decrease in f raises the shock-tube
performance curves somewhat. The acceptable Mach number range is
generally broadened, as a result, as is seen by comparing Figs. 31 and 32
with 24 and 25, respectively. In addition, the assumed maximum value of
10,000 gauss now corresponds to a larger value of Y. This is shown in Fig.
33, for illustrative purposes, which is to be compared with Fig. 26. With
MS = 7.2 a larger value of X is now involved although the corresponding
variation of € with BO is more pronounced. The combination L/)\O =2
f=7.9 kMc is examined in Figs. 34 through 37. It is immediately apparent
that a larger number of meaningful experimental conditions are now possible,
as are higher values of X and Y. Thus, for P, = 5 cm (Fig. 34, as compared
with Fig. 28) more values of Ms can be used and a larger value of X exam-
ined. The obvious improvement provided by this condition is shown further

in Fig. 36 for p, = tcm.

Preliminary consideration has been given to a possible shock-tube
program. The resultant analysis clearly shows the need for such calculations
and allows us to obiain meaningful experimental conditions. The plasma
properties, for argon (Figs. 22 and 23), and therefore the corresponding
propagation results, are probably too sensitive to MS for experimental pur-
poses. A qualitative indication of the problem may be derived from the
present discussion, and the same procedure will be used in a more definitive

analysis of an experimental program using other gases.
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SECTION VI

PRELIMINARY ANALYSIS OF THE INHOMOGENEOUS PLASMA PROBLEM

We will be concerned in this section with the problem of examining the
more realistic inhomogeneous plasma model. The analyses are preliminary
in character in that only typical quantitative effects are obtained from the
general considerations. It is expected that this problem will be examined

further in some detail in the present research program.

Consider the propagation problem governed by Eq. (52) with the

electron density distribution:

X(z) = X +(Xy - X_) e 3% , z>0 (a> 0)

(67)

=X0 5 z <0

Although the exponential profile has been examined, especially in ionospheric
work, as was noted in the summary of Section III, the above form is more
suitable for the present purpose. Assuming the incident wave to be linearly

polarized along the x-axis gives the solution in the region z <0 as:

B _ (1) : e 2,1/2 (2) d a2 2.1/2
w EY c exp[-mo (no - 89 z] +c exp[lno (n” - %) z] . (68)
where n’c';z =1- mXO is the constant index of refraction (not necessarily
free space). In the region z > 0O:
w"+n2{C2-m[X + (X, -X )e-az]}w 0 (69)
0 w 0 w L
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Introducing the substitution:

2in
_90 1/2 1/2 -az/2
£ = — m (X0 - Xm) e ; (70)
we obtain Bessel's equation:
2 2in
d°w |, 1 dw a _ _ 0, .2 1/2
2 e e T S aie i Sl A
and the solution;
(72)

wig) = <P 5 &) + P 38

For sufficiently large z, £ << 1, and:

ta za(-az/2)
Ty lE)~ £75 ~ 73"

e is negative, such that the real part

The imaginary part of (C2 - mXoo)
of a is positive; then, since w must be finite as z -+ oo, it follows that the

upper sign must be chosen, i.e., c(4) = 0:

wig) = ¢ 5_(g) (73)
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At z = 0, w and dw/dz must be continuous, and we obtain:

-2 =22 1/2 L/ P
Lo gt s m g - x ) s -
D g ATl T x - x ) 50/3 ()
3) 2mi? - 312 5 6113 (1)
c (n§™ - 8" T+ m T AX, - X )T T /T (L)
' 2(n__éz _s3l/2
T _ = e s (76)
2700 i A W o x )T )
2ing /2 1/2
t=—2m P (x - %) (77)

Since Bessel functions of complex order and argument are not
tabulated, preliminary quantitative information can best be obtained by an
examination of the limiting forms of the solution. Using the series expansion

for the Bessel function, we obtain, for:
lg]<<| , (78)

1 - (ingy/a) [(ngz i 52)1/2 ) ‘“of ) s2)1/2I

1+ (ing/a) [(n‘62 - s4iey

D (79)
e 2,1/2
(“Zi) L) ]
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2 _ s21/2
(e 2]

LR U LY (iny/2) [(ng?‘ - s4ile (ngj‘ 2 52)1’2]

1 + (2in,/a) (nx® i

where R and TO are the limiting values for an abrupt interface separating

two homogeneous media:

(n’SZ - stz (n’g:' _syl/2 -
= ’ 81

(n,g? _ 52)1/2 + (ng _ S2)1/2

2(n’82 _ S2)1/2

T - (82)

0 (ng"ﬁ- 52)1/2 + (n*Z B S2)1/2

o)
Thus, for IXO - xool sufficiently small, or a, )\O, Z, or Y sufficiently

large, so that |{]|<< |, the reflection coefficient is less than the correspond-

ing well-known result (81) as shown in Eq. (79).

From the asymptotic expansion for the Bessel function or the WKB

analysis, it follows that (assuming OI = 0 now, for convenience):

-a (na:cz = n:'cz)
R = ® "~ 0 g (83)
8in nt> + a (n*° - nk9)
annd [ee) 0

8inon33
T (84)

v 8in0n3§+ a (n’g: - n’('sz)
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Although it is not necessary to be so restrictive, it will suffice for the
present purpose to examine the following limiting expressions. For a
rapidly varying exponential profile (a - o) Eqs. (79) and (80) reduce to
(for 91 = 0):

2in0n=(1; in0
R=§(1 -— ) , T0='”f‘0 [1 -<-—a—-) (n=(-)< - n;-‘o)] »  (85)
(n¥% - n3* 2nx
__ 0 Q0 o 0
"WmFnE. ' 0 wEFaE (86)
0 o0 0 o]

At the other extreme of a slowly varying profile (a - 0) Eqs. (83) and (84)

reduce to:

=2 %2 %2 %2
-a(ngo - n¥ ) a(ngo - n§ )
e e IO CR e ———— oy (87, 88)
81n0n6 81n0n6

Rather than undertake a tedious numerical analysis of the formidable exact
solutions, (74) and (76), or the simplified expressions, (79), (80) and (83),
(84) which would involve the parameters a, )\0, XO, Xoo’ Z, and Y, an
over-all measure of the influence of the inhomogeneous region can be
derived from the limiting relations (85), (86) and (87), (88). These approxi-
mate solutions are valid for arbitrary values of n'(') and ng‘o, provided that

a is sufficiently large in (85) and (86) and sufficiently small in (87) and (88).
Hence, it is clear that in the present inhomogeneous plasnia boundary value
problem, nearly zero reflection and perfect transmission is obtained when
the electron density is slowly varying. For the rapidly varying case, the
reflection and transmission coefficients approach the abrupt interface
homogeneous results which may assume essentially arbitrary values,

depending on the quantities na and noo
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Additional information can be derived from the following modified
version of the preceding boundary value problem which is particularly appro-

priate in several laboratory applications. If we replace (67) by:

X(z) = X + (X, - X_) i BN z>0 (2 > 0)
(89)
=0 0 z<0 Y
the corresponding expressions become:
1/2 1/2 _,
N e (X, - xw)m PO -
C+m (X~ X )T ()
- 2C J (6)/7 (¢) o
= 1
172 7 j i 2
C+m "7 (X, - X ) "TTH/T ()
2C
T, = : (92)
O cem Pxy-x ) 515 ()
For |t]<<]|:
. 1 + (iny/a) [(ngf syl g, Xg/X ) - (1 - Xg/X ) c] o
e 3
1 +{iny/a) [(ng:‘ -V i e xrx )+ - xo/xm)a
. 2 2,1/2
1+ (ZmO/a) (n:‘:;o - 89
To = Ty 172 (54)

1 + (iny/a) [(nf&f -sylle g FX /X )+ (1= X /X ) c]
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2.1/2

2
C - (n*" - 87
o = 2C
R = ) 0 T = . (95, 96)
C + (n*Z _ s2)1/2 0 ¢, (n*Z [ s2)172
o] @
In the asymptotic or WKB limit (for OI = 0):
%2 2l 22
. 1 - ni - a (nao - n§ )/41n0n6
R— - ’ (97)
1 +n% +a (n%° - nx°) /din_nz’
0 o ~ 70 0™0
2
T, = . (98)
0 sl :’:2 :‘:2 1 :‘:2
1 + no + a (nc'D = no )/41n0n0
The further requirement that a be very large or very small results
in the following (for QI = 0):
2in X in X
a-+oo 0 0 a—+00 = 0 0 e
R “= R[l-(a)<1-x—)] . Ty " = TO[I-T<1--X—)(1-n60)],
e} o]
o Y-mh, o 2
Reyeme 0 ToToe Gp Lo
@ @
b sk 2 3¢ 2 b3 2 B 2
as0 ! " 7§ Sng ) as0 2 alns, 20
AR o { B 2 » To =T ear Loz >
0 21n0nz-)= (1 - ng ) 0 41n0n6 (1 +nb‘)

(101, 102)
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Detailed calculations can be made from the exact solution or, in a
restrictive but far more convenient manner, from the corresponding limiting
expressions. Equations (99 ) through (102) are valid for arbitrary values

of Xo, Xoo’ Z, and Y, provided that a is sufficiently large in (99, 100) and
sufficiently small in (101, 102). Substantially different results obviously can
be obtained from the rapidly varying and slowly varying cases. The solution
approach R and TO in the former, whereas in the latter the same limiting

expressions are obtained with ngg replaced by nﬁ.

There are relatively few solutions of the inhomogeneous plasma
problem that include detailed calculations of transinission and reflection.
The similarity between Eqs. (41) and (50) allows us to make use of one such
solution, that of Albini and Jahn. 21 In particular, the numerical results
given in this paper (BO = 0) for the more complicated slab geometry can be

applied to the present magnetoactive problem.

For the case of normal incidence (normal applied magnctic field) and
a ramp profile, a linear electron density connecting free space with a

homogeneous medium is assumed:
X(z) =0 5 z2<0 5
- Bz 0< L
"B =05 ' (103)
= ﬁ , z ZL

It is apparent from the previous analysis of Eq. (52) that the reflection and
transmission coefficients obtained by Albini and Jahn will apply with a
magnetic field present for some equivalent set of physical parameters.

When the magnetic field is included:

Ne=nsf (L) =1-mp
- ¥ v)~! [ -pz 1T Y)"2 (104)
L Z =1 i 3 .7 .
1+2° (1FY) 1 +2°(1FY
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Selecting two values of N, labeled Nr and Nl , for which the distribution
of R and T with L/)\O is given by Albini and Jahn, we must obtain the unique
values of B, Z, and Y which determine the same curves in the magnetoactive

case. For Nl = a - ib and Nr = ¢ - id, it follows from (104) that:

-1 -2
I ‘3“2+ &) s . 2abs= Bz LY. (08, 106)

1 +2°(1 +Y)" 1+2°(1+Y)

20 B(1 - v)~! Bz (1-v)°
A . 2cd = 5 (107, 108)

1+ 2%(1 - ¥)~° 1+2%(-7)
Clearly the solution of (105) through (108) for (B, Z, Y) in terms of

the specified quantities (a, b; ¢, d) is not unique since there are four equations

in three unknowns. An additional constraint is implied which will result in

the requirement that the choice of Nr and N, is not entirely arbitrary.

!
Eliminating B from (105, 106) and (107, 108) gives rise to two equations in

Z and Y from which we obtain:

Y_cd(az-bz-l)-ab(cz-dz-1) (109)
- 2 2 2 2 ’
cd (a° - b - 1) +ab (c“ - a°- 1)

= ; 5 -4abcd 5 5 . (110)
cd(a” -b -1)+ab{c -4 -1)

In order that the derived value of B obtained from (105, 106) and (107,108)

be unique, it is necessary that;

cd [(a‘2 SR Y 4a2b2| - ab [(cz e W 4c2d2] , (111)
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in which case B is given by the relation,

2 2 2 2.2
(C -d - 1) +4c d . (112)

oA B e e e I

B = -2ab

A specific value of Nr =c - id and a (in Nl = a - ib) used by Albini and
Jahn may be selected. The required value of b was obtained from (111).
Since in their graphs of |R| versus L/)\O, for example, a family of curves
is presented with a fixed and b varied, the distribution of |R£| versus L/)\o
for the derived value of N! was readily interpolated. The variation of

| Rr| and |R£| with L/Xo is thus obtained, corresponding to the values of

Y, Z, and B which are computed from Eqgs. (109), (110), and (112),
respectively. It is desirable, of course, to obtain the comparable results
with no applied magnetic field. Having determined pf and Z, we can

calculate N = e - if, for Y = 0, from the equations:

ez_f2=1-_p2_=A1 , 2ef =—PZ __ A . (113,114)
142 142
1. €.,
A +(A2+A2)1/21/2 A
o 1 C e (115)
2 ' Ze

Since neither e nor f is conveniently specified, a double interpolation of the
Albini-Jahn results is required. Illustrative results are shown in Fig. 38

for the condition:

B = X(L) = 0.82 , Z =19. 67 , Y=1.0r0 . (116)
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The limiting solution as a -0, Eq. (87), of the semi-infinite problem
(ns = 1) is identical with the atorementioned Albini-Jahn solution for large
values of L/)\O with the corresponding terms being X, fanda=1/L.

In this case (in which small values of IRI are implied), we obtain:

IR| = B , (117)
16m (L) [(1F Y)° + 2%/

2 2
|R| =[ 1422 ]2 ‘R _1 Ryl + &, (118)
IRel l(17 v)° + 2° SR N\ B e

0

where RO is the reflection coefficient when Y = 0. For Y << 1, e_ =~ ¢

R R.’
as one would expect. If Y >>1, Ierz | Rl|<< | ROI such that 0

€, << ep , unless Z is much larger than Y in which case, e, <ep . If

R RO R R

Y = 0(1), then |R,[<|R,[; whereas |R_[>[R/[ for 0 <Y <2, and

[R_|<|R,| for Y > 2. Hence, if Y > 2, thene_ < e, , and if 0 < Y < 2, then
r 0 R Rg - -

€eg may be less than or greater than eRO; i.e., the applied magnetic field

actually may increase the reflected power, depending on the value of Z.

When Y = 1, for example:

hence, ‘R >> €R for Z << 1. The effect of L/)\O, as derived above from

the Albini-Jahn calculations for the case of a linear ramp, is illustrated in

Fig. 38 for the condition (116). The magnitudes of Rr’ R,, and R, vary

yi 0
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relative to one another depending on the value of L/)\o. Although R is
generally less than eRo, as expected R > ERO by an order of magnitude for

L/)\0 = 0.8. Some numerical results are summarized in the following table.

L/)\o IRol lRll |Rr| R ERO
0. 205 0. 221 0.105 0. 030 0. 042
0. 065 0. 065 0.017 0.0025 0. 00421
0.015 0. 040 0.028 0.00119 0. 000225

To evaluate the influence of a finite inhomogeneous region, it is
necessary to obtain the corresponding calculation of Rr and R! for a
homogeneous plasma slab of thickness L with the same physical parameters.
It is not sufficient, for example, to compare the inhomogeneous medium
calculation of | R| for a particular value of L/)\o with the corresponding
abrupt interface result (L/)\0 = 0). A principal conclusion given in the
Albini-Jahn paper is that reflection and transmission depend strongly upon
the width of the transition zone and, to a lesser extent, on the detailed
profile of the transition. The curves presented in their report show the
specific influence of the transition dimension L for several profiles, as well
as the effect of the index of refraction of the homogeneous medium. It is
evident from their results, however, that the propagation may be strongly
dependent on the plasma properties as well as on L/)\o. For the magneto-
active plasma, therefore, the effect of the inhomogeneous region on
propagation may be quite pronounced under certain conditions, even when L

is just a fraction of the free space wavelength.

Clearly the limited results obtained in this fashion are not adequate.
A more detailed examination of the effect of a finite inhomogeneous region
on propagation can be continued as follows: Compute Nr and NI from
(105) through (108) corresponding to assigned values of X, Y, and Z of

interest, in the manner outlined by Eqs. (113) through (115). Reflection and
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transmission coefficients can be obtained then from the expressions derived
by Albini and Jahn for the ramp, kinked ramp, and trapezoidal profiles,
including an applied magnetic field. Additional solutions of (50) for other
profiles or geometries would have to be obtained anew in the previously
described manner. Varying X, Y, Z, and L/)\o will serve to cover the
appropriate range of plasma and magnetic field characteristics while several

electron density profiles can be used for parametric purposes.

~57-



SECTION VII

PROPAGATION IN NONUNIFORM, MAGNETOACTIVE PLASMAS

The magnetic field term in the general equations (17) through (20) can
be spatially dependent, as was observed at the end of Section II. This is
clearly also the case for the basic wave-like equation (22). Only limited
consideration has been given to such problems. This is due in part, perhaps,
to the fact that a substantial contribution to the field has been made in iono-
spherie research wherein the magnetic field is essentially uniform. In the
re-entry flight application discussed in Section V, for example, the applied
magnetic field is expected to be nonuniform. Therefore, it will be necessary
to examine the complex problem of propagation in nonuniform magnetoactive
plasmas. The additional difficulty arises from the fact that any nonuniformity
in the magnetic field is intrinsically two or three dimensional; hence, the

governing differential equations are partial rather than ordinary.

We shall restrict our preliminary attention to the two-dimensional case
in whieh the applied magnetie field is in the x-z plane and 8/8y = 0. Further,
it is assumed to be symmetrical about the z-axis sueh that for x = 0,

B e 0 and B

0 0z
illustrated in Fig. 39. No current is introduced intc the stationary plasma

= BOz (z) while the magnetic field lines diverge for x £ 0 as

as a result of the application of such a steady dc magnetic field. It follows,

since BOy = 9/8y = 0, that:
8B, 8B, 9By, 2B, "
ax 0z ' ax 9z ’
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the last equation resulting from the solenoidal character of §0' Assuming a

power series expansion about x = 0, we can show that:

(2n+1)
e i (_1)n+ld BOz(O'z) x2n+1 W
ox'™’ d772n+l) (2n + 1)7 !
n=0 )

> (120)

o a2 B,,(0,2) 2n
By, (x.2) = B, (0,2) + E (-1) EDY Gy
n=1 z y,
If we let:
(e9) = 0 =
Ei(x,z) = Z Ein(z)x , H/i(x, z) = Z H.m(z)x , (121)
n=0 n=0

where i = x, y, z, it follows from Eqgs. (17), (18), (21), (120), and (121)
that, to zeroth order in x, the ordinary differential equations (48) apply. In
this approximation, one can demonstrate, therefore, the effect of a variable
YL(z). The effect of some curvature in the magnetic field lines due to the
component YT and, therefore, some dependence on x can be obtained from
the first-order terms in the expansions (121), provided that the quantities
dBOz(o' z)/dz and dZBoz(O, z)/dz2 are of order one, or that the products
[dBOZ(O’ z)/dz]x and [dZBOZ(O, z)/dzz]x2 are sufficiently small. In solving for
the higher order terms, it will be necessary to appropriately order the

plasma properties X and Z.

Although Egs. (48) are clearly more complicated when YL is a function

of z than for the case of a variable X previously considered, preliminary
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results can be derived based on the above expansion procedure. It is
reasonable to assume, for the present purpose, that the applied magnetic

field is of the form:

Y (2) = Yge %, a>0 . (122)
For z > 0:
FY  exp(-az)] -
2 X (7Y, exp -az
'+ ol [1 - ﬁ{l ] = }] F=0 ., [u>>Yge . (123)
Introducing the substitution:
2n 1/2
li - ao% (;YO)I/Z e-a.Z/Z , (124)
we obtain the general solution:
2in 1/2 2in . n*
_ (3 (4) _ 0 X _ 00
Fec™l I+ T g, p=—=1(1-7) -==— ,  (125)

where n’é is the index of refraction with zero applied magnetic field. For

sufficiently large z, y < < 1, and:

£p_ (£P)-az/2)
TpW) ~ 470~ e e

Since the imaginary part of ng is negative, Re B > 0, and the upper sign must

be chosen in order to satisfy the boundary condition at z = oo:

Fw) = g (126)
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We shall assume the region z < 0 to be free space and the incident wave

linearly polarized along the x-axis. Hence:

-in,z in.z
F(z)=c(1)e 4 +c(2)e g , for z< 0

Applying the boundary conditions at z = 0, we obtain:

1@ 1/2 g

1o EY )2 (913 4(9)

1/2 J'l

J2) 14X
R = =

(1) - 1/2

01 T oy ey )12 o)/ 3 (90

23 0)/3 o(9)
R SR VLTS .

T(y) =
1 - i(Xllz

2
T(z = 0)= T, = _
O xRy ey )R sen e
2n, 1/2
o= 32 X myptf?

For |¢| << 1,

(1 = n*o‘) 1 -[(ino/a)(=FY0)(1 + nB)]/U(l + Zinong/a)
R =
1 +n¥/ )1 -[ino/a)(fFYO)(l = ng)]/U(l + 2ingn%/a) '
T, = ) :
0\l n¥/ |1 +[in0/a)(=FYO)(l - ng)]/U(l + 2in0n=8/a)

Since IYO exp(-az)| < < |U|, it follows that |¢| < < 1 provided that,
I(Zno/a)Xl/Z/(fF YO)I/ZI is of order one, or smaller.

-2

(127)

(128)

(129)

(130)

(131)

(132)

(133)



In the asymptotic or WKB limit:

T

R =

2
- i %
1 n + aX(*YO)/‘hnOU ot

2

" . 2
1+ uyl| - aX(#YO)/‘hnOU 0

2

2 )

0

where the index of refraction:

R

a»m 5

)1/2

characterizes the uniform magnetoactive problem.

[ Zinon‘E;HYo)]
Rl - —————
aU

i+
Il

01+

L

“hogh- S

inOX(¥YO) J

i o
0[ U%a(l + n¥)
aX(#YO)

2in 2 U1 - n"g’z)i‘

4in

aX(#YO) }
0

n*ZUZ(l + n*)
c c

o

- 2
Sle 3 b
1 aX(#YO)/‘hnOU wh

1/2
} , U] >> v

2 »

0

It follows that:

= 0
’ R'l+n§; ’
= 2
’ TO_1+r1‘i-'; ’
l-n’-c‘
0 I;U‘_l#-m'< ’
2
¥ = —
’ TO 1+ n*
c

{134)

(135)

(136)

(137)

{138)

(139)

(140)



Specific calculations can be made readily using the limiting expressions
(132) through (136), which cover a reasonably broad range of conditions.
Equations (132) and (133) are appropriate, for example, if Y0 is the same
order of magnitude as X, and if a is the order of 4v/xo, or larger. Itis
apparent from the simplified relations (137) through (140), however, that if
the field is slowly varying, the solution approaches the constant magnetic
field results R* and T’g. By contrast, for a rapidly varying field, the
solution approaches R and T0 in which there is no effect of the applied
magnetic field. This general observation is a clear indication of the possible
substantial importance of a nonuniform, applied, magnetic field. A broad
indication of this type is consistent with the present purpose. Further anal-
ysis of the initial expansion procedure, including a plasma slab geometry,
for example, would be required pefore a detailed quantitative analysis would
be warranted. It appears that an experimental investigation of this problem
may be feasible after the initial study described earlier in this report has

been completed.

The analysis for a nonuniform, applied, magnetic field is dependent,
certainly, on the character of the nonuniformity. In the present discussion,
this nonuniformity is due to the application of a magnetic field which is of the
type one might reasonably expect to use to improve transmission in actual
flight applications. The preliminary consideration of a formal expansion
procedure resulted in a general evaluation of the effect of a longitudinal
variable magnetic field. A more complete treatment of the partial differ-
ential equations is outlined so as to account for the distortion of the wave
forms resulting from the dependence of the index of refraction on x. Other
forms of a nonuniform, applied, magnetic field may be postulated. It should
be remarked also that even when Y = YL = constant, the interaction of the
flow with the applied magnetic field results in an induced nonuniformity in the
field as well as inhomogeneities in the medium. In the magnetogasdynamic
sense, these perturbations generally are expected to be small. It may be
shown readily, however, that small changes in the thermodynamic properties
of the gas, and therefore in the plasma properties, or small, induced non-
uniformities in the magnetic field may be of significance in several applications

of interest.
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SECTION VIII

SUMMARY

The basic equations governing the propagation of electromagnetic waves
in inhomogeneous, dissipative, nonuniforim, magnetoactive plasmas are
derived in Section II. A review of the present state of the art for plane
harmonic waves is presented in Sections IIl and IV. The plasma is assumed
to be homogeneous in the former, and the essential features of ray theory
are discussed along with the limiting condition as prescribed by the WKB
approximation. In Section IV, the general inhomogeneous plasma problem is
described. Some consideration is given to the magneto-ionic coupling theory
for a stratified medium assuming constant collision frequency and an arbi-
trary orientation of the uniform, applied magnetic field. Particular emphasis
is placed, however, on the problem of propagation across an abrupt plane
(z = 0) interface into an inhomogeneous plasma region where the incident
wave may be oblique (its wave normal in the x-z plane) if there is no applied
magnetic field but must be normal in the uniform, magnetoactive problem.
The governing ordinary differential equations are derived with the magnetic
field in the x-z plane; however, detailed consideration is given to the problem
in which the field is applied in the direction of propagation, i.e., normal to

the interface.

Exact solutions for a number of assumed functional forms of the index
of refraction are summarized along with various boundary value problems
that have been considered. The utility of these formal solutions is limited
by the difficulty encountered in abstracting numerical results. Detailed
calculations have been made, therefore, in only a few instances. As is
usually the case when analytical expressions are available, however, con-
siderable information can be obtained from the limiting forms of these

solutions. Numerical and approximate analytical procedures are discussed
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which may be used to obtain solutions for more complicated forms of the
index of refraction or in the analysis of more general propagation problems
referred to above. The reader is referred to the bibliographies and reviews
of Brekhovskikh, b Spence, Eg Evans, &9 and Owens, [ as well as to those
already cited in the text, for a more general treatment of the propagation

problem as well as additional references.

Mention should be made, at least in the summary, of ionospheric
research with regard to the propagation of Whistlers. Whistlers are low-
frequency electromagnetic wave packets that propagate along magnetic lines
in the ionosphere. They are of possible interest for the present purpuse
since the appropriate frequency ratios, X > Y >> 1, are of the same order of
magnitude as wcre found in several applications discussed in this report.
Although Whistler theory may, therefore, be applied to a certain extent in
such cases, it is uniortunately not too far advanced. Current work is
primarily concerned with ray propagation. The transmission of wave packets
and their group velocity is analyzed. This is used in the study of trans-
mission of momentary disturbances such as electromagnetic radiation from
lightning bolts in the atmosphere, the source of atmospheric Whistlers. Use
of ray theory in regimes of large Y, where Whistlers propagate, is
generally found to be valid when the medium properties, and therefore the
electromagnetic fields, are slowly varying. Although full wave solutions
have been found for propagation at oblique angles to uniform magnetic fields,
the manner in which the electromagnetic waves propagate along the magnetic
lines is not always clear. Reference has been made to the paper of French,
Cloutier, and Bachynski, >4 in which the existence of very low-frequency
"windows'' due to the ion cyclotron mode was pointed out. This also has
been observed in the study of Whistlers and may be of definite interest in the

4 s 71
present study. Additional detail is given, for example, by Budden, = Hines,

T R o o e

The present preliminary analysis of the effect of an applied nagnetic
field on propagation is contained in Sections V through VII. The initial

quantitative treatment of the problem was made in Section V using the
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simplified model of a homogeneous plasma slab, assuming normal incidence
and normal applied, uniform, magnetic field. A detailed parametric calcu-
lation of transmission and reflection was made for a wide range of values of
X, 2, Y, and L/)\O. Illustrative transmission results are given in Figs. 3
through 16. It is apparent immediately that the manner in which the mag-
netic field affects transmission is dependent upon a number of significant
parameters. The size of the field is obviously a factor, but so, for example,
T X, Z, L/)\O,

all of the parameters is discussed in detail in Subsection A.

are the values of db and f involved. The combined effect of

It is clear, however, that substantial improvement in transmission
generally can be derived from the application of reasonable field strengths
for moderately overdense plasmas. This is also the case when X >>1 pro-
vided that one accepts as much as 10 to 20 db degradation in the transmitted
signal, in contrast to the requirement of, at times, an impractical order of
magnitude larger field when near-complete transmission is considered.
Several exemplary re-entry situations were analyzed in the second subsection.
The problem of a 10-degree half-angle cone is summarized in Fig. 17, and
corresponding transmission results are given in Figs. 18 through 21, The
effect of the magnetic field in eliminating blackout is discussed for the flight
conditions and signal frequencies considered assuming several different
levels of acceptable transmission. It should be noted that a preliminary
analysis of the boundary layer on a 10-degree cone clearly indicates the
existence of electron density gradients in the direction of propagation. The
magnetic field required to provide a specified acceptable level of transmission
can be reduced substantially when the more realistic inhomogeneous plasma
is considered, as is demonstrated in Section VI. An experimental shock-tube
program is briefly analyzed at the conclusion of this section. Although the
resultant range of conditions (fp and fc) which may thus be obtained using
argon is satisfactory, their dependence on the shock Mach number appears
to be too strong for acceptable experimental work. A qualitative appreciation
of the problem may be obtained from this discussion, however, and the pro-

cedure will be repeated using other gases in subsequent detailed studies of
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the program. It is at once clear from the theoretical calculations that an
arbitrary choice of shock-tube conditions could lead easily to the collection
of virtually meaningless experimental results. Using the solution for e T and
€R with the constraints that these quantities and their derivatives with
respect to X be within prescribed bounds, we have found that the possible
experimental conditions (Ms' pl) are well delineated; this is vividly demon-
strated in Figs. 24, 25, 31, and 32, The variation of e and €R with Bo for

these conditions is shown in Figs. 26 through 30 and 33 through 37.

It was noted above that the variation of de with Y becomes more
gradual for lower values of de, particularly when X >> 1. It follows that
such effects as plasma inhomogeneities and nonuniformities in the magnetic
field, even if they are relatively small, can be of considerable practical
importance. A less accurate theoretical calculation of de may result in a
significant error in the prediction of the applied magnetic field requirement
which is subject to definite practical limitations. In Fig. 4b, for example,
for X = 100, a 25-percent decrease in the value of de {(for 10 db or less)
would result in at least a 50-percent increase in one's estimate of the field
strength. The use of a homogeneous plasma slab model for the analysis of a
re-entry cone could easily produce such errors in the prediction of de.
Hence, the more realistic inhomogeneous plasma slab model is considered
in Section VI. An exponential distribution of electron density is assumed.
The plasma is taken to be semi-infinite in extent, a simplifying assumption
that is appropriate in certain laboratory applications but is considerably
more approximate in the flight applications of present interest. Exact
solutions to two boundary value problems are obtained involving Bessel
functions of the first kind with complex order and argument. Considerably
simplified expressions are obtained from the small and large argument
expansions of the solutions. The over-all effect of the inhomogeneity is
immediately evident, however, since the limiting expression for a large
electron density gradient approaches the well-known homogeneous result,
whereas substantially different values may be obtained from the corresponding

case in which the gradients are small. Quantitative results of the effect of an
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applied magnetic field on the reflected power for the inhomogeneous plasma
problem are obtained using the solution (87), i.e., for a -0 (taking n6< =1).
This is identical to the solution for a linear ramp in the limit of large L/ )\0'
The relative size of IRr l, |R£ I, and lRol will vary depending on the values
of Z and Y. Although €R is generally less than ERO' as expected, the applied
magnetic field actually can increase the reflected power. Indeed, it is found
that for ¥ = 1, € >> ‘R, when Z << 1. The effect of L/)\O is derived from
the Albini-Jahn calculations for the case of a linear ramp and is illustrated

in Fig. 38 for one set of values of B, Z, and Y. The reflected energy depends
on L/)\O, and although it is generally smaller in the magnetoactive case, it is

interesting to note that for L/X = 0.8, ¢ R > ‘R, by an order of magnitude.

A preliminary analysis of propagation in a semi-infinite, homogeneous,
nonuniform, magnetoactive plasma is made in Section VII. The incident wave
is normal to the free space-plasma interface (z = 0), and the magnetic field
is applied in the x-z plane, symmetrical about the z-axis, as shown in
Fig. 39, where BOX(O, z) = 0 and BOZ(O, z) = Boz(z). Such a geometry is a
reasonable approximation to what one might expect in actual flight applications
of the use of magnetic fields to improve transmission. A formal expansion
procedure in powers of x is proposed which, to order zero, reduces to the
usual ordinary differential equation (50) in which the magnetic field has only
a2 variable longitudinal component. Assuming that YL(Z) = Yoe-az(a > 0),

YL << |U|, this boundary value problem is solved in terms of Bessel
functions of the first kind of complex order and argument. The limiting
forms of this solution for small and large values of the argument are also
derived. A general observation of the possible significance of the nonuni-
formity can be determined from the expression for the case of a slowly
varying and rapidly varying field strength. In the former limit, the solution
approaches the corresponding constant magnetic field result, while in the
latter case the favorable effect of the magnetic field is essentially lost. The
fact that applied magnetic fields will not be uniform in such applications,
along with the fact that the magnetogasdynamic effect will induce nonuni-
formities in the field (as well as plasma inhomogeneities), requires that this

complicated problem be given further consideration.
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SECTION IX

FIGURES

Fig.

1.

Propagation geometry
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Case Alt. L u
(kft) {(cm) (kfps) p c
1 50 0.119 26 5.2% 100 4.2x 10'°
2 38. 6 3.9x 100 3.8x 10'°
3 22 2.3% 1020 3.2x 1010
4 20 1.3 ot 2.7x 1010
5 100 0. 406 26 2.6% 100 4.9x10?
6 23. 6 1010 4.2x10°
7 22 6% 107 3.5% 107
8 20 3.2% 107 2.9% 107
9 150 1.25 26 8.6x 107 5.7x 108
10 2B 6 2.9x 107 4.7% 108
11 22 1.5% 107 3, 9% 108
12 20 8 x 108 3% 108

_ o)
TW = 1500"K

Axial position = 11 ft

Fig. 17. Re-entry 10-degree half angle cone at zero angle of attack,

definition of cases
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-30 T T T

SIGNAL FREGUENCY,f =2.4 X 10° cps
RE-ENTRY VELOCITY,u:26,000 fps

.25 | ! —
dby =10 log I:-E (IT,P + IT‘P)]

-20 It -1

de

as b 4l
150,000 ft
-10 = 100,000 ft -
50,000 ft
-5
0 L ! I —

o] 5 10 -1 20
By, kilogauss

Transmitted energy, re-entry l10-degree cone at zero angle of attack;

£ = 2. 4% 10° cps, u = 26,000 ps
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-25 Y T T
SIGNAL FREQUENCY, f=2.4X10° cps
RE-ENTRY VELOCITY, uz 23,600 fps
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-15 | =
-
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-0 | .
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100,000 ft
-5 ha
50,000 ft
L
0 .
0 5 10 15 20

B,.kilagauss

Fig. 20. Transmitted energy, re-entry 10-degree cone at zero angle of attack;
f=2.4% lO8 cps, u = 23,600 {ps
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SIGNAL FREQUENCY, f = 3 X 10% cps
RE-ENTRY VELOCITY, u = 26,000 fps

.20 F doy = 10109, [%-<|T,|2+|Tt|2)] e

150,000 ft

100,000 ft

50,000 ft

0 l 1 e —
o 5 10 15 20

Bo,kllogouss

Transmitted energy, re-entry 10-degree cone at zero angle of attack;

=1 BEX 109 cps, u = 26,000 fps
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PLASMA FREQUENCY, f, (cps)

103

o'z

|0“

0'®

INITIAL PRESSURE, p, (cm Hg) =

SHOCK MACH NUMBER, M,

Fig. 22. Shock-tube generated plasma properties {argon);

plasma frequency, fp (cps)
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fe (cps)

COLLISION FREQUENCY,

13
il % | | | | | ]
= INITIAL PRESSURE, p (cm Hg) = "1

15

10! =
1o =y
10'° =
10? =i
l

108

20

SHOCK MACH NUMBER, M,

Fig. 23. Shock-tube generated plasma properties (argon);

collision frequency, fc (cps)
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